Exploiting Fully Observable and Deterministic Structures in Goal POMDPs
نویسندگان
چکیده
When parts of the states in a goal POMDP are fully observable and some actions are deterministic it is possible to take advantage of these properties to efficiently generate approximate solutions. Actions that deterministically affect the fully observable component of the world state can be abstracted away and combined into macro actions, permitting a planner to converge more quickly. This processing can be separated from the main search procedure, allowing us to leverage existing POMDP solvers. Theoretical results show how a POMDP can be analyzed to identify the exploitable properties and formal guarantees are provided showing that the use of macro actions preserves solvability. The efficiency of the method is demonstrated with examples when used in combination with existing POMDP
منابع مشابه
Counterfactual equivalence for POMDPs, and underlying deterministic environments
Partially Observable Markov Decision Processes (POMDPs) are rich environments often used in machine learning. But the issue of information and causal structures in POMDPs has been relatively little studied. This paper presents the concepts of equivalent and counterfactually equivalent POMDPs, where agents cannot distinguish which environment they are in though any observations and actions. It s...
متن کاملQuasi-Deterministic Partially Observable Markov Decision Processes
We study a subclass of POMDPs, called quasi-deterministic POMDPs (QDET-POMDPs), characterized by deterministic actions and stochastic observations. While this framework does not model the same general problems as POMDPs, they still capture a number of interesting and challenging problems and, in some cases, have interesting properties. By studying the observability available in this subclass, w...
متن کاملQuasi deterministic POMDPs and DecPOMDPs
In this paper, we study a particular subclass of partially observable models, called quasi-deterministic partially observable Markov decision processes (QDET-POMDPs), characterized by deterministic transitions and stochastic observations. While this framework does not model the same general problems as POMDPs, it still captures a number of interesting and challenging problems and have, in some ...
متن کاملTowards efficient planning for real world partially observable domains by Pradeep Varakantham A
My research goal is to build large-scale intelligent systems (both singleand multi-agent) that reason with uncertainty in complex, real-world environments. I foresee an integration of such systems in many critical facets of human life ranging from intelligent assistants in hospitals to offices, from rescue agents in large scale disaster response to sensor agents tracking weather phenomena in ea...
متن کاملExploiting locality of interaction in factored Dec-POMDPs
Decentralized partially observable Markov decision processes (Dec-POMDPs) constitute an expressive framework for multiagent planning under uncertainty, but solving them is provably intractable. We demonstrate how their scalability can be improved by exploiting locality of interaction between agents in a factored representation. Factored Dec-POMDP representations have been proposed before, but o...
متن کامل